设a,b,c为正实数,求证:,并指出等号成立的条件. |
|
已知p:方程x2+mx+1=0有两个不等的负实根,q:方程4x2+4(m-2)x+1=0无实根.若p或q为真,p且q为假.求实数m的取值范围. |
|
将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论: (1)AC⊥BD; (2)△ACD是等边三角形 (3)AB与平面BCD所成的角为60°; (4)AB与CD所成的角为60°. 则正确结论的序号为 . |
|
椭圆的离心率,则m的取值范围为 . | |
设OA是球O的半径,M是OA的中点,过M且与OA成45°角的平面截球O的表面得到圆C.若圆C的面积等于,则球O的表面积等于 . | |
已知,(两两互相垂直),那么= . | |
命题“∃x∈R,”的否定是 . | |
设x,y满足约束条件,若目标函数z=ax+by(a>0,b>0)的值是最大值为12,则的最小值为( ) A. B. C. D.4 |
|
在三棱柱ABC-A1B1C1中,各棱长相等,侧棱垂直于底面,点D是侧面BB1C1C的中心,则AD与平面BB1C1C所成角的大小是( ) A.30° B.45° C.60° D.90° |
|
设e1,e2分别为具有公共焦点F1与F2的椭圆和双曲线的离心率,P为两曲线的一个公共点,且满足,则的值为( ) A. B.1 C.2 D.不确定 |
|