若如图的程序框图输出的S是126,则①应为( ) A.n≤5 B.n≤6 C.n≤7 D.n≤8 |
|
已知函数y=sin(ωx+φ)的部分图象如图所示,则点P(ω,φ)的坐标为( ) A. B. C. D. |
|
给定下列四个命题: ①若一个平面内的两条直线与另一个平面都平行,则这两个平面平行; ②若两个平面都垂直于同一条直线,则这两个平面平行; ③若两个平面互相垂直,则在其中一个平面内的直线垂直另外一个平面; ④若两个平面互相平行,则在其中一个平面内的直线平行另外一个平面. 其中为真命题的是( ) A.①和② B.②和③ C.③和④ D.②和④ |
|
已知函数f(x)是定义在R上的偶函数,且当x>0时,f(x)=ln(x+1),则函数f(x)的大致图象为( ) A. B. C. D. |
|
命题“∃x∈R,使log2x≤0成立”的否定为( ) A.∃x∈R,使log2x>0成立 B.∃x∈R,使log2x≥0成立 C.∀x∈R,均有log2x≥0成立 D.∀x∈R,均有log2x>0成立 |
|
已知复数z满足(1-i)z=2,则z为( ) A.1+i B.1-i C.-1+i D.-1-i |
|
函数的定义域为. (1)求函数f(x)的值域; (2)设函数.若对于任意x1∈,总存在x2∈,使得g(x2)=f(x1)成立,求a的取值范围. |
|
某隧道长2150m,通过隧道的车速不能超过20m/s.一列有55辆车身长都为10m的同一车型的车队(这种型号的车能行驶的最高速为40m/s)匀速通过该隧道,设车队的速度为xm/s,根据安全和车流的需要,当0<x≤10时,相邻两车之间保持20m的距离;当10<x≤20时,相邻两车之间保持m的距离.自第1辆车车头进入隧道至第55辆车尾离开隧道所用的时间为y(s). (1)将y表示为x的函数; (2)求车队通过隧道时间y的最小值及此时车队的速度. |
|
设数列{an}的前n项和为Sn=2n2,{bn}为等比数列,且a1=b1,b2(a2-a1)=b1. (Ⅰ)求数列{an}和{bn}的通项公式; (Ⅱ)设cn=,求数列{cn}的前n项和Tn. |
|
已知等差数列{an}满足:a3=7,a5+a7=26.{an}的前n项和为Sn. (Ⅰ)求an及Sn; (Ⅱ)令(n∈N*),求数列{bn}的前n项和Tn. |
|