若关于x的不等式2x2-3x+a<0的解集为( m,1),则实数m= . | |
用a,b,c,d四个不同字母组成一个含n+1(n∈N+)个字母的字符串,要求由a开始,相邻两个字母不同.例如n=1时,排出的字符串是ab,ac,ad;n=2时排出的字符串是aba,abc,abd,aca,acb,acd,ada,adb,adc,…,如图所示.记这含n+1个字母的所有字符串中,排在最后一个的字母仍是a的字符串的种数为an. (1)试用数学归纳法证明:; (2)现从a,b,c,d四个字母组成的含n+1(n∈N*,n≥2)个字母的所有字符串中随机抽取一个字符串,字符串最后一个的字母恰好是a的概率为P,求证:. |
|
如图,在四棱锥P-ABCD中,底面ABCD是边长为1的正方形,PA⊥底面ABCD,点M是棱PC的中点,AM⊥平面PBD. (1)求PA的长; (2)求棱PC与平面AMD所成角的正弦值. |
|
若两条曲线的极坐标方程分别为p=l与p=2cos(θ+),它们相交于A,B两点,求线段AB的长. |
|
如图,△ABC的外接圆的切线AE与BC的延长线相交于点E,∠BAC的平分线与BC交于点D.求证:ED2=EB•EC. |
|
已知. (1)求f(x)的定义域; (2)求f(x)的最大值和最小值; (3)若,如何由(2)的结论求g(x)的最大值和最小值. |
|
设f(x)=x3,等差数列{an}中a3=7,a1+a2+a3=12,记Sn=,令bn=anSn,数列的前n项和为Tn. (Ⅰ)求{an}的通项公式和Sn; (Ⅱ)求证:; (Ⅲ)是否存在正整数m,n,且1<m<n,使得T1,Tm,Tn成等比数列?若存在,求出m,n的值,若不存在,说明理由. |
|
设圆C1:x2+y2-10x-6y+32=0,动圆C2:x2+y2-2ax-2(8-a)y+4a+12=0, (Ⅰ)求证:圆C1、圆C2相交于两个定点; (Ⅱ)设点P是椭圆上的点,过点P作圆C1的一条切线,切点为T1,过点P作圆C2的一条切线,切点为T2,问:是否存在点P,使无穷多个圆C2,满足PT1=PT2?如果存在,求出所有这样的点P;如果不存在,说明理由. |
|
如图,A,B,C是三个汽车站,AC,BE是直线型公路.已知AB=120km,∠BAC=75°,∠ABC=45°.有一辆车(称甲车)以每小时96(km)的速度往返于车站A,C之间,到达车站后停留10分钟;另有一辆车(称乙车)以每小时120(km)的速度从车站B开往另一个城市E,途经车站C,并在车站C也停留10分钟.已知早上8点时甲车从车站A、乙车从车站B同时开出. (1)计算A,C两站距离,及B,C两站距离; (2)若甲、乙两车上各有一名旅客需要交换到对方汽车上,问能否在车站C处利用停留时间交换. (3)求10点时甲、乙两车的距离. (参考数据:,,,) |
|
如图,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点. (Ⅰ)求证:AF∥平面BCE; (Ⅱ)求证:平面BCE⊥平面CDE. |
|