相关试题
当前位置:首页 > 高中数学试题
把函数manfen5.com 满分网的图象向左平移2个单位,再向下平移1个单位,所得图象的函数解析式为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
AB是过抛物线y2=4x焦点F的弦,已知A,B两点的横坐标分别是x1,x2且x1+x2=6,则|AB|等于( )
A.10
B.8
C.7
D.6
已知manfen5.com 满分网manfen5.com 满分网为两个非零向量,有以下命题:①manfen5.com 满分网2=manfen5.com 满分网2   ②manfen5.com 满分网manfen5.com 满分网=manfen5.com 满分网2 ③|manfen5.com 满分网|=|manfen5.com 满分网|且manfen5.com 满分网manfen5.com 满分网,其中可以作manfen5.com 满分网=manfen5.com 满分网的必要但不充分条件的命题的( )
A.②
B.①③
C.②③
D.①②③
设集合A={(x,y)|4x+y=6},B={(x,y)|3x+2y=7},则满足C⊆A∩B的集合C的个数是( )
A.0
B.1
C.2
D.3
已知数列{an}的相邻两项an,an+1是关于x的方程x2-2nx+bn=0(n∈N*)的两实根,且a1=1.
(1)求证:数列manfen5.com 满分网是等比数列;
(2)设Sn是数列{an}的前n项和,求Sn
(3)问是否存在常数λ,使得bn>λSn对∀n∈N*都成立,若存在,求出λ的取值范围,若不存在,请说明理由.
如图所示,椭圆manfen5.com 满分网的离心率为manfen5.com 满分网,且A(0,1)是椭圆C的顶点.
(1)求椭圆C的方程;
(2)过点A作斜率为1的直线l,在直线l上求一点M,使得以椭圆C的焦点为焦点,且过点M的双曲线E的实轴最长,并求此双曲线E的方程.

manfen5.com 满分网
已知f′(x)是f(x)的导函数,f(x)=ln(x+1)+m-2f′(1),m∈R,且函数f(x)的图象过点(0,-2).
(1)求函数y=f(x)的表达式;
(2)设manfen5.com 满分网,若g(x)>0在定义域内恒成立,求实数a的取值范围.
manfen5.com 满分网已知四棱锥P-ABCD的三视图如图所示,其中正(主)视图与侧(左)视为直角三角形,俯视图为正方形.
(1)求四棱锥P-ABCD的体积;
(2)若E是侧棱PA上的动点.问:不论点E在PA的任何位置上,是否都有BD⊥CE?请证明你的结论?
(3)求二面角D-PA-B的余弦值.
某次运动会在我市举行,为了搞好接待工作,组委会招募了16名男志愿者和14名女志愿者,调查发现,男、女志愿者中分别有10人和6人喜爱运动,其余不喜爱.
(1)根据以上数据完成以下2×2列联表:
喜爱运动不喜爱运动总计
1016
614
总计30
(2)根据列联表的独立性检验,能否在犯错误的概率不超过0.10的前提下认为性别与喜爱运动有关?
(3)从女志愿者中抽取2人参加接待工作,若其中喜爱运动的人数为ξ,求ξ的分布列和均值.
参考公式:manfen5.com 满分网,其中n=a+b+c+d
参考数据:
P(K2≥k0.400.250.100.010
k0.7081.3232.7066.635

已知函数manfen5.com 满分网的最大值为2.
(1)求a的值及f(x)的最小正周期;
(2)求f(x)在区间[0,π]上的单调递增区间.
共1028964条记录 当前(81381/102897) 首页 上一页 81376 81377 81378 81379 81380 81381 81382 81383 81384 81385 81386 下一页 末页 转到 GO
Copyright @ 2019 满分5 学习网 ManFen5.COM. All Rights Reserved.