(16)如图所示,MNPQ是竖直放置相距1m为的滑平行金属导轨(导轨足够长,电阻不计),其上方连有R1的电阻和两块水平放置相距d20cm的平行金属板AC,金属板长1m,将整个装置放置在图示的匀强磁场区域,磁感强度B1T,现使电阻R2的金属棒ab与导轨MNPQ接触,并由静止释放,当其下落h10m时恰能匀速运动(运动中ab棒始终保持水平状态,且与导轨接触良好).此时,将一质量m10.45g,带电量q1.0×10-4C的微粒放置在AC金属板的正中央,恰好静止。g10m/s2).求:

(1)微粒带何种电荷,ab棒的质量m2是多少

(2)金属棒自静止释放到刚好匀速运动的过程中,电路中释放多少热量

(3)若使微粒突然获得竖直向下的初速度v0,但运动过程中不能碰到金属板,对初速度v0有何要求?该微粒发生大小为的位移时,需多长时间

 

(14)某些城市交通部门规定汽车在市区某些街道行驶速度不得超过v030km/h.一辆汽车在该水平路段紧急刹车时车轮抱死,沿直线滑动一段距离后停止.交警测得车轮在地面上滑行的轨迹长为s010m.从手册中查出该车轮胎与地面间的动摩擦因数为μ0.75,取重力加速度g10m/s2

(1)假如你是交警,请你判断汽车是否违反规定,超速行驶(在下面写出判断过程)

(2)目前,有一种先进的汽车制动装置,可保证车轮在制动时不被抱死,使车轮仍有一定的滚动,安装了这种防抱死装置的汽车,在紧急刹车时可获得比车轮抱死更大的制动力,从而使刹车距离大大减小.假设汽车安装防抱死装置后刹车制动力恒为f,驾驶员的反应时间为t,汽车的质量为m,汽车行驶的速度为v,试推出刹车距离s(反应距离与制动距离之和)的表达式.

(3)根据刹车距离s的表达式,试分析引发交通事故的原因的哪些

 

I为测定木块与斜面间的动摩擦因数,某同学让木块从斜面上端自静止起做匀加速下滑运动(如图所示),他使用的实验器材仅限于:倾角固定的斜面(倾角未知)木块;秒表;米尺;(重力加速度为g)

1)实验中应记录的数据是_______

2)用上述测量数据表示计算动摩擦因数的公式是=__________

3)为了减小测量的误差,可采用的办法是___________________

II4分)在互成角度二力合成的实验中某学生有如下操作步骤,试按合理的顺序将步骤序号填在下面的线上:____________________

A.只用一个弹簧秤,通过细绳套把橡皮条结点拉到O点,记下弹簧秤读数F和细绳方向

B.把橡皮条一端固定在木板上,在橡皮条另一端栓上两根细绳套(此端交点称为结点)

C.用两个弹簧秤通过两个互成角度的细绳套拉橡皮条,使之伸长到一定长度,在白纸上记下结点位置O,同时记下两个弹簧秤读数F1F2和两根细绳方向

D.把白纸钉在木板上

E.改变F1F2的大小和方向,重作两次实验

F.用同一比例图示F1F2F,作图求出F1F2合力F',比较FF'得出实验结论

III8分)如图是测量阻值约几十欧的未知电阻Rx的原理图,图中R0是保护电阻(10 Ω)R1是电阻箱(099.9 Ω)R是滑动变阻器,A1A2是电流表,E是电源(电动势10 V,内阻很小)。在保证安全和满足需求的情况下,使测量范围尽可能大.实验具体步骤如下:

(1)连接好电路,将滑动变阻器R调到最大;

(2)闭合S,从最大值开始调节电阻箱R1,先调R1为适当值,再调节滑动变阻器R,使A1示数I10.15 A,记下此时电阻箱的阻值R1A2的示数I2

(3)重复步骤(2),再测量6R1I2的值;

(4)将实验测得的7组数据在如图所示坐标纸上描点.

根据实验回答以下问题:

现有四只供选用的电流表

A.电流表(03 mA,内阻为2.0 Ω)

B.电流表(03 mA,内阻未知)

C.电流表(00.3 A,内阻为5.0 Ω)

D.电流表(00.3 A,内阻未知)

①A1应选用________A2应选用________

测得一组R1I2值后,调整电阻箱R1,使其阻值变小,要使A1示数I10.15 A,应让滑动变阻器R接入电路的阻值________(选填不变变大变小”)

在坐标纸上画出R1I2的关系图。

根据以上实验得出Rx________ Ω

 

如图所示,水平桌面上放着一对平行金属导轨,左端与一电源相连,中间还串有一开关K导轨上放着一根金属棒ab,空间存在着垂直导轨平面向下的匀强磁场.已知两导轨间距为d,电源电动势为E,导轨电阻及电源内阻均不计,ab棒的电阻为R,质量为m,棒与导轨间摩擦不计.闭合开关Kab棒向右运动并从桌边水平飞出,已知桌面离地高度为h,金属棒落地点的水平位移为s。下面的结论中正确(   )

A.开始时ab棒离导轨右端的距离

B.磁场力对ab棒所做的功

C.磁场力对ab棒的冲量大小

Dab棒在导轨上运动时间

 

如图所示,导电物质为电子的霍尔元件位于两串联线圈之间,线圈中电流为I,线圈间产生匀强磁场,磁感应强度大小BI成正比,方向垂直于霍尔元件的两侧面,此时通过霍尔元件的电流为IH,与其前后表面相连的电压表测出的霍尔电压UH满足:UH=k,式中k为霍尔系数,d为霍尔元件两侧面间的距离.电阻R远大于RL,霍尔元件的电阻可以忽略,则( )

A. 霍尔元件前表面的电势低于后表面

B. 若电源的正负极对调,电压表将反偏

C. IHI成正比

D. 电压表的示数与RL消耗的电功率成正比

 

如图所示,质量为m,电量为q的带正电的物体,在磁感应强度为B,方向垂直纸面向里的匀强磁场中,沿动摩擦因数为μ的水平面向左运动,则 (  )

A.若另加一个电场强度为μ(mg+qvB)/q,方向水平向右的匀强电场,物体做匀速运动

B.若另加一个电场强度为(mg+qvB)/q,方向竖直向上的匀强电场,物体做匀速直线运动

C.物体的速度由v减小到零所用的时间等于mv/μ(mg+qvB)

D.物体的速度由v减小到零所用的时间小于mv/μ(mg+qvB)

 

如图所示,为一个均匀透明介质球,球心位于O点,半径为R。一束单色光从真空中沿DC方向平行于直径AOB射到介质球上的C点,DCAB的距离HR/2.若该光束射入球体经一次反射后由E点(图中未标出)再次折射回真空中,此时的出射光线刚好与入射光线平行,已知光在真空中的速度为c,则

A.介质球的折射率为n=3

B.若增大入射光的频率,则该出射光线仍与入射光线平

C.光束从C点射入到从B点射出所经历的总时间为6R/c

D.若介质球的折射率增大,则该出射光线仍与入射光线平行

 

如图所示,一条质量分布均匀的L的铁链置于光滑水平桌面上.用手按着一端,使另一端长L0的一段下垂.放开手后使铁链从静止开始下滑,当铁链完全通过桌边的瞬间时,铁链具有的速率为

 

 

地球赤道上的重力加速度为g=9.8m/,物体在赤道上的向心加速度约为an=3.39cm/,若使赤道上的物体处于完全失重状态,则地球的转速应约为原来的

A.17倍   B.49倍   C.98倍      D.289倍

 

如图所示,在一个倾角为θ的斜面上,有一个质量为m,带负电的小球P(可视为点电荷),空间存在着方向垂直斜面向下的匀强磁场,带电物体与斜面间的摩擦力不能忽略,它在斜面上沿图中所示的哪个方向运动,有可能保持匀速直线运动状态是

A.v1方向       Bv2方向       Cv3方向       Dv4方向

 

如图所示,一质量为m、长为L的木板A静止在光滑水平面上,其左侧固定一劲度系数为k的水平轻质弹簧,弹簧原长为l0,右侧用一不可伸长的轻质细绳连接于竖直墙上。现使一可视为质点小物块B以初速度v0从木板的右端无摩擦地向左滑动,而后压缩弹簧。设B的质量为λm,当时细绳恰好被拉断。已知弹簧弹性势能的表达式,其中k为劲度系数,x为弹簧的压缩量。求:

1)细绳所能承受的最大拉力的大小Fm

2)当时,小物块B滑离木板A时木板运动位移的大小sA

3)当λ2时,求细绳被拉断后长木板的最大加速度am的大小

4)为保证小物块在运动过程中速度方向不发生变化,λ应满足的条件

 

如图甲所示,在真空中,半径为R的圆形区域内存在匀强磁场,磁场方向垂直纸面向外。在磁场左侧有一对平行金属板MN,两板间距离也为R,板长为L,板的中心线O1O2与磁场的圆心O在同一直线上。置于O1处的粒子发射源可连续以速度v0沿两板的中线O1O2发射电荷量为q、质量为m的带正电的粒子(不计粒子重力),MN两板不加电压时,粒子经磁场偏转后恰好从圆心O的正下方P点离开磁场;若在MN板间加如图乙所示交变电压UMN,交变电压的周期为t=0时刻入射的粒子恰好贴着N板右侧射出。求

1)匀强磁场的磁感应强度B的大小

2)交变电压电压U0的值

3)若粒子在磁场中运动的最长、最短时间分别为t1 t 2 ,则它们的差值为多大?

 

如图所示,一木箱静止在长平板车上,某时刻平板车以a = 2.5m/s2的加速度由静止开始向前做匀加速直线运动,当速度达到v = 9m/s时改做匀速直线运动,己知木箱与平板车之间的动摩擦因数μ= 0.225,箱与平板车之间的最大静摩擦力与滑动静擦力相等(g取10m/s2)。求:

(1)车在加速过程中木箱运动的加速度的大小

(2)木箱做加速运动的时间和位移的大小

(3)要使木箱不从平板车上滑落,木箱开始时距平板车右端的最小距离。

 

某同学在进行扩大电流表量程的实验时,需要知道电流表的满偏电流和内阻。他设计了一个用标准电流表G1来校对待测电流表G2的满偏电流和测定G2内阻的电路,如图所示。已知G1的量程略大于G2的量程,图中R1为滑动变阻器,R2为电阻箱。该同学顺利完成了这个实验。

../../../../..//14R7-181.TIF

(1)实验步骤如下;

A.分别将R1R2的阻值调至最大

B.合上开关S1

C.调节R1使G2的指针偏转到满刻度,此时G1的示数I1如图甲所示,则I1      μA

D.合上开关S2

E.反复调节R1R2的阻值,使G2的指针偏转到满刻度的一半,G1的示数仍为I1,此时电阻箱R2的示数r如图乙所示,则r      Ω

(2)仅从实验设计原理上看,用上述方法得到的G2内阻的测量值与真实值相比_____(选填偏大”“偏小相等”)

(3)若要将G2的量程扩大为I,并结合前述实验过程中测量的结果,写出需在G2上并联的分流电阻RS的表达式,RS________。(用II1r表示)

 

某实验小组用如图甲所示装置测量木板对木块的摩擦力所做的功。实验时,木块在重物牵引下向右运动,重物落地后,木块继续向右做匀减速运动。图乙是重物落地后打点计时器打出的纸带,纸带上的小黑点是计数点,相邻的两计数点之间还有4个点(图中未标出),计数点间的距离如图所示。已知打点计时器所用交流电的频率为50 Hz

(1)可以判断纸带的________(左端右端”)与木块连接。根据纸带提供的数据可计算出打点计时器在打下A点、B点时木块的速度vAvB,其中vA________m/s(结果保留两位有效数字)

(2)要测量在AB段木板对木块的摩擦力所做的功WAB,还应测量的物理量是________(填入物理量前的字母)

A.木板的长度l           B.木块的质量m1

C.木板的质量m2           D.重物的质量m3

E.木块运动的时间t        FAB段的距离xAB

(3)AB段木板对木块的摩擦力所做的功的关系式WAB________。(用vAvB和第(2)问中测得的物理量的字母表示)

 

对于真空中电量为Q的静止点电荷而言,当选取离点电荷无穷远处的电势为零时,离点电荷距离为r处电势为k为静电力常量)。如图所示,一质量为m、电量为q可视为点电荷的带正电小球用绝缘丝线悬挂在天花板上,在小球正下方的绝缘底座上固定一半径为R的金属球,金属球接地,两球球心间距离为d。由于静电感应,金属球上分布的感应电荷的电量为q。则下列说法正确的是( 

A.金属球上的感应电荷电量

B.金属球上的感应电荷电量

C.绝缘丝线中对小球的拉力大小为

D.绝缘丝线中对小球的拉力大小

 

一列简谐横波沿x轴正方向传播,t=0时刻波形如图所示,此时刻后介质中的P质点回到平衡位置的最短时间为0.2sQ质点回到平衡位置的最短时间为1s,已知t=0时刻PQ两质点对平衡位置的位移相同,则

A.该简谐波的周期为1.2s

B.该简谐波的波速为0.05m/s

Ct=0.8s时,P质点的加速度为零

D.经过1s,质点Q向右移动了1m

 

如图所示,竖直放置的等螺距螺线管高为h,该螺线管是用长为l的硬质直管(内径远小于h)弯制而成。一光滑小球从上端管口由静止释放,关于小球的运动,下列说法正确的是(   )

A. 小球到达下端管口时的速度大小与l有关

B. 小球到达下端管口时重力的功率为

C. 小球到达下端的时间为

D. 小球在运动过程中受管道的作用力大小不变

 

“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O,外圆弧面AB的电势为 ,内圆弧面CD的电势为,足够长的收集板MN平行边界ACDB,ACDB与MN板的距离为L.假设太空中漂浮着质量为m,电量为q的带正电粒子,它们能均匀地吸附到AB圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子的影响,不考虑过边界ACDB的粒子再次返回。

(1)求粒子到达O点时速度的大小;

(2)如图2所示,PQ与ACDB重合足够长和收集板MN之间区域加一个匀强磁场,方向垂直纸面向内,则发现均匀吸附到AB圆弧面的粒子经O点进入磁场后最多有能打到MN板上,求所加磁感应强度的大小;

(3)如图3所示,PQ与ACDB重合足够长和收集板MN之间区域加一个垂直MN的匀强电场,电场强度的方向如图所示,大小,若从AB圆弧面收集到的某粒子经O点进入电场后到达收集板MN离O点最远,求该粒子到达O点的速度的方向和它在PQ与MN间运动的时间。

 

如图1所示,一端封闭的两条平行光滑长导轨相距L,距左端L处的右侧一段被弯成半径为的四分之一圆弧,圆弧导轨的左、右两段处于高度相差的水平面上。以弧形导轨的末端点O为坐标原点,水平向右为x轴正方向,建立Ox坐标轴。圆弧导轨所在区域无磁场;左段区域存在空间上均匀分布,但随时间t均匀变化的磁场B(t),如图2所示;右段区域存在磁感应强度大小不随时间变化,只沿x方向均匀变化的磁场B(x),如图3所示;磁场B(t)和B(x)的方向均竖直向上。在圆弧导轨最上端,放置一质量为m的金属棒ab,与导轨左段形成闭合回路,金属棒由静止开始下滑时左段磁场B(t)开始变化,金属棒与导轨始终接触良好,经过时间t0金属棒恰好滑到圆弧导轨底端。已知金属棒在回路中的电阻为R,导轨电阻不计,重力加速度为g.

(1)求金属棒在圆弧轨道上滑动过程中,回路中产生的感应电动势E;

(2)如果根据已知条件,金属棒能离开右段磁场B(x)区域,离开时的速度为v,求金属棒从开始滑动到离开右段磁场过程中产生的焦耳热Q;

(3)如果根据已知条件,金属棒滑行到x =x1位置时停下来,

a.求金属棒在水平轨道上滑动过程中通过导体棒的电荷量q;

b.通过计算,确定金属棒在全部运动过程中感应电流最大时的位置。

 

据《每日邮报》2015427日报道,英国威尔士一只100岁的宠物龟“T夫人”(Mrs T)在冬眠的时候被老鼠咬掉了两只前腿。“T夫人的主人为它装上了一对从飞机模型上拆下来的轮胎。现在它不仅又能走路,甚至还能跑步了,现在的速度比原来快一倍。如图所示,设“T夫人质量m=1.0kg在粗糙水平台阶上静止,它与水平台阶表面的阻力简化为与体重的k倍,k=0.25,且与台阶边缘O点的距离s=5m。在台阶右侧固定了一个1/4圆弧挡板,圆弧半径R=m,今以O点为原点建立平面直角坐标系。“T夫人通过后腿蹬地可提供F=5N的水平恒力,已知重力加速度

1“T夫人为了恰好能停在O点,蹬地总距离为多少?

2“T夫人为了恰好能停在O点,求运动最短时间;

3)若“T夫人在水平台阶上运动时,持续蹬地,过O点时停止蹬地,求“T夫人击中挡板上的位置的坐标。

 

在“描绘小灯泡的伏安特性曲线”的实验中,小灯泡的规格为

“3.8V 0.3A”,除了开关、导线外,还有如下器材:

电压表V: 量程0~5V,内阻约5k

电流表A1:量程0~500mA,内阻约0.5

电流表A2:量程0~100 mA,内阻约4

滑动变阻器R1:最大阻值10,额定电流2.0A

滑动变阻器R2:最大阻值100,额定电流1.0A

直流电源E:电动势约6V,内阻约0.5

(1)上述器材中,电流表应选        ,滑动变阻器应选        .(填器材符号)

(2)在电路中所有元器件都完好,且电压表和电流表已调零,闭合开关后,发现反复调节滑动变阻器,小灯泡亮度发生变化,但电压表、电流表的示数不能调为零,则断路的导线为        (用图中给出的导线符号表示).

(3)通过实验得出了小灯泡的I-U图线如图乙,可知在小灯泡上的电压为2.0V时,小灯泡的电阻是

   

(4)如果把该小灯泡直接接在电动势是2V、内阻是8的电源上组成闭合回路,则通过小灯泡的电流为

       A

 

如图所示,某同学在做探究功与速度变化的关系的实验。当小车在l条橡皮筋 的作用下沿木板滑行时,橡皮筋对小车做的功记为W。当用2条、3橡皮筋重复实验时,设法使每次实验中橡皮筋所做的功分别为2W3W…manfen5]

1)图中电火花计时器的工作电压是________V

2)实验室提供的器材如下:长木板、小车、橡皮筋、打点计时器、纸带、电源等,还缺少的测量工具是________

3)图中小车上有一固定小立柱,下图给出了4种橡皮筋与小立柱的套接方式,为减小实验误差,你认为最合理的套接方式是________[来源:学科

4)在正确操作的情况下,某次所打的纸带如图所示。打在纸带上的点并不都是均匀的,为了测量橡皮筋做功后小车获得的速度,应选用纸带的________部分进行测量(根据下面所示的纸带回答),小车获得的速度是________m/s(计算结果保留两位有效数字)

 

如图所示,相同的乒乓球1、2恰好在等高处水平越过球网,不计乒乓球的旋转和空气阻力,乒乓球自最高点到落台的过程中,正确的是

A.过网时球1的速度小于球2的速度

B.球1的飞行时间大于球2的飞行时间

C.球1的速度变化率等于球2的速度变化率

D.落台时,球1的重力功率等于球2的重力功率

 

如图所示为一直流电路,电源内阻不能忽略,但R0大于电源内阻,滑动变阻器的最大阻值小于R,当滑动变阻器滑片P从滑动变阻器的最右端滑向最左端的过程中,下列说法正确的是     

A.电压表的示数一直增大           B.电流表的示数一直增大

C.电阻R0消耗的功率一直增大      D.电源的输出功率一直增大

 

如图所示x轴上各点的电场强度如图所示,场强方向与x轴平行,规定沿x轴正方向为正,一负点电荷从坐标原点O以一定的初速度沿x轴正方向运动,点电荷到达x2位置速度第一次为零,在x3位置第二次速度为零,不计粒子的重力.下列说法正确的是

A.点电荷从O点运动到x2,再运动到x3的过程中,速度先均匀减小再均匀增大,然后减小再增大

B.点电荷从O点运动到x2,再运动到x3的过程中,加速度先减小再增大,然后保持不变

C.O点与x2和O点与x3电势差UOx2= UOx3

D.点电荷在x2、x3位置的电势能最小

 

趣味运动会上运动员手持网球拍托球沿水平面匀加速跑,设球拍和球的质量分别为Mm,球拍平面和水平面之间的夹角为θ,球拍与球保持相对静止,它们之间的摩擦及空气阻力不计,则

A. 运动员的加速度为gtanθ

B. 球拍对球的作用力为

C. 运动员对球拍的作用力为

D. 若加速度大于gsinθ,球一定沿球拍向上运动

 

下列说法错误的是(     )

A. 进入加油站后,禁烟、禁火、禁打手机、严禁给塑料容器加注油品。

B. 滑动摩擦力可以对物体做正功,也可以对物体做负功,也可以对物体不做功。

C. 电荷在电势高的地方,电势能大,电荷在电势低的地方,电势能小。

D. 灵敏电流表在运输的时候应该用导线把两个接线柱连一起。

 

( 19分)如图,在直角坐标系xOy平面内,虚线MN平行于y轴,N点坐标(-l,0),MN与y轴之间有沿y 轴正方向的匀强电场,在第四象限的某区域有方向垂直于坐标平面的圆形有界匀强磁场(图中未画出)。现有一质量为m、电荷量大小为e的电子,从虚线MN上的P点,以平行于x 轴正方向的初速度v0射入电场,并从y轴上A点(0,0.5l)射出电场,射出时速度方向与y轴负方向成300角,此后,电子做匀速直线运动,进入磁场并从圆形有界磁场边界上Q点(,-l)射出,速度沿x轴负方向.不计电子重力.求:

(1)匀强电场的电场强度E的大小?

(2)匀强磁场的磁感应强度B的大小?电子在磁场中运动的时间t是多少?

(3)圆形有界匀强磁场区域的最小面积S是多大?

 

(17分)如图所示,两条足够长的平行金属导轨相距L,与水平面的夹角为,整个空间存在垂直于导轨平面的匀强磁场,磁感应强度大小均为B,虚线上方轨道光滑且磁场方向向上,虚线下方轨道粗糙且磁场方向向下.当导体棒EF以初速度沿导轨上滑至最大高度的过程中,导体棒MN一直静止在导轨上,若两导体棒质量均为m、电阻均为R,导轨电阻不计,重力加速度为g,在此过程中导体棒EF上产生的焦耳热为Q,求:

(1)导体棒MN受到的最大摩擦力;(2)导体棒EF上升的最大高度.

 

Copyright @ 2014 满分5 满分网 ManFen5.COM. All Rights Reserved.