已知⊙O:x2+y2=1和定点A(2,1),由⊙O外一点P(a,b)向⊙O引切线PQ,切点为Q,且满足|PQ|=|PA|. (1)求实数a,b间满足的等量关系; (2)求线段PQ长的最小值; (3)若以P为圆心所作的⊙P与⊙O有公共点,试求半径最小值时⊙P的方程.
|
|
将圆x2+y2+2x-2y=0按向量平移得到⊙O,直线l与⊙O相交于A、B两点,若在⊙O上存在点C,使.求直线l的方程.
|
|
已知关于x,y的方程组仅有一组实数解,则符合条件的实数k的个数是 .
|
|
若圆x2+y2=4与圆x2+y2+2ay-6=0(a>0)的公共弦的长为,则a= .
|
|
已知直线l1与l2平行,点A是这两直线之间的一定点,且点A到这两直线的距离分别为3和2,以A为直角顶点的直角三角形另两顶点B、C分别在直线l1、l2上,则当B、C运动时,直角三角形ABC面积的最小值为 .
|
|
如图,A,B是直线l上的两点,且AB=2.两个半径相等的动圆分别与l相切于A,B点,C是这两个圆的公共点,则圆弧AC,CB与线段AB围成图形面积S的取值范围是 .
|
|
已知圆C的圆心与点P(-2,1)关于直线y=x+1对称.直线3x+4y-11=0与圆C相交于A,B两点,且|AB|=6,则圆C的方程为 .
|
|
已知AC、BD为圆O:x2+y2=4的两条相互垂直的弦,垂足为M(1,),则四边形ABCD的面积的最大值为 .
|
|
直线x+a2y+1=0与直线(a2+1)x-by+3=0互相垂直,a、b∈R且ab≠0,则|ab|的最小值为 .
|
|
设⊙O:,直线l:x+3y-8=0,若点A∈l,使得⊙O上存在点B满足∠OAB=30°(O为坐标原点),则点A的横坐标的取值范围是 .
|
|