已知函数f(x)=|2x+1|+|2x-3|, (1)求不等式f(x)≤6的解集. (2)若关于x的不等式f(x)>a恒成立,求实数a的取值范围. |
|
以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的单位长度.已知直线l经过点P(1,1),倾斜角α=. (I)写出直线l的参数方程; (II)设l与圆ρ=2相交于两点A、B,求点P到A、B两点的距离之积. |
|
如图,在△ABC中,D是AC的中点,E是BD的中点,AE的延长线交BC于F. (Ⅰ)求的值; (Ⅱ)若△BEF的面积为S1,四边形CDEF的面积为S2,求S1:S2的值. |
|
设函数,其中a为常数. (1)证明:对任意a∈R,y=f(x)的图象恒过定点; (2)当a=-1时,判断函数y=f(x)是否存在极值?若存在,求出极值;若不存在,说明理由; (3)若对任意a∈(0,m]时,y=f(x)恒为定义域上的增函数,求m的最大值. |
|
已知椭圆M的对称轴为坐标轴,且抛物线的焦点是椭圆M的一个焦点,又点A在椭圆M上. (Ⅰ)求椭圆M的方程; (Ⅱ)已知直线l的方向向量为,若直线l与椭圆M交于B、C两点,求△ABC面积的最大值. |
|
如图,在四棱锥S-ABCD中,底面ABCD是正方形,其他四个侧面都是等边三角形,AC与BD的交点为O,E为侧棱SC上一点. (Ⅰ)当E为侧棱SC的中点时,求证:SA∥平面BDE; (Ⅱ)求证:平面BDE⊥平面SAC; (Ⅲ)(理科)当二面角E-BD-C的大小为45°时,试判断点E在SC上的位置,并说明理由. |
|
有甲乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后, 得到如下的列联表:
(Ⅰ)请完成上面的列联表; (Ⅱ)根据列联表的数据,若按95%的可靠性要求,能否认为“成绩与班级有关系”; (Ⅲ)若按下面的方法从甲班优秀的学生抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到6或10号的概率. |
|||||||||||||||||
在△ABC中,角A、B、C的对边分别为a、b、c,若•=•=1. (Ⅰ)求证:A=B; (Ⅱ)求边长c的值; (Ⅲ)若|+|=,求△ABC的面积. |
|
在数列{an}中,若点(n,an)在经过点(5,3)的定直线l上,则数列{an}的前9项和S9= | |
某时段内共有100辆汽车经过某一雷达地区,时速频率分布直方图如图所示,则时速超过60km/h的汽车数量为 辆. |
|